Advertisement

What Surgeons Need to Know About Gene Therapy for Cancer

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Yamamoto M.
        • Curiel D.T.
        Cancer gene therapy.
        Technol Cancer Res Treat. 2005; 4: 315-330
        • Cross D.
        • Burmester K.
        Gene therapy for cancer treatment: past, present and future.
        Clin Med Res. 2006; 4: 218-227
        • Naldini L.
        Gene therapy returns to centre stage.
        Nature. 2015; 526: 351-360
        • Singh V.
        • Khan N.
        • Jayandharan G.
        Vector engineering, strategies and targets in cancer gene therapy.
        Cancer Gene Ther. 2021; https://doi.org/10.1038/s41417-021-00331-7
        • Gottesman M.
        Cancer gene therapy: an awkward adolescence.
        Cancer Gene Ther. 2003; 10: 501-508
        • Tazawa H.
        • Kagawa S.
        • Fujiwara T.
        Advances in adenovirus-mediated p53 cancer gene therapy.
        Expert Opin Biol Ther. 2013; 13: 1569-1583
        • Lara-Guerra H.
        • Roth J.
        Gene therapy for lung cancer.
        Crit Rev Oncog. 2016; 21: 115-124
        • Saleh A.
        • Perets R.
        Mutated p53 in HGSC- from a common mutation to a target for therapy.
        Cancers (Basel). 2021; 13: 3465
        • Hayashi T.
        • Fujita K.
        • Hayashi Y.
        • et al.
        Mutational landscape and environmental effects in bladder cancer.
        Int J Mol Sci. 2020; 21: 6072
        • Michel M.
        • Kaps L.
        • Maderer A.
        • et al.
        The role of p53 dysfunction in colorectal cancer and its implication for therapy.
        Cancers (Basel). 2021; 13: 2296
        • Tamura R.E.
        • Lana M.G.
        • Costanzi-Strauss E.
        • et al.
        Combination of cabazitaxel and p53 gene therapy abolishes prostate carcinoma tumor growth.
        Gene Ther. 2020; 27: 15-26
        • Vermaelen K.
        Vaccine strategies to improve anti-cancer cellular immune responses.
        Front Immunol. 2019; 10: 8
        • Marshall J.S.
        • Warrington R.
        • Watson W.
        • et al.
        An introduction to immunology and immunopathology.
        Allergy Asthma Clin Immunol. 2018; 14: 49
        • Neek M.
        • Kim II, T.
        • Wang S.
        Protein-based nanoparticles in cancer vaccine development.
        Nanomedicine. 2019; 15: 164-174
        • Thomas S.
        • Prendergast G.C.
        Cancer vaccines: a brief overview.
        Methods Mol Biol. 2016; 1403: 755-761
        • Kantoff P.W.
        • Higano C.S.
        • Shore N.D.
        • et al.
        Sipuleucel-T immunotherapy for castration-resistant prostate cancer.
        N Engl J Med. 2010; 363: 411-422
        • Fukuhara H.
        • Ino Y.
        • Todo T.
        Oncolytic virus therapy: a new era of cancer treatment at dawn.
        Cancer Sci. 2016; 107: 1373-1379
        • Martuza R.L.
        • Malick A.
        • Markert J.M.
        • et al.
        Experimental therapy of human glioma by means of a genetically engineered virus mutant.
        Science. 1991; 252: 854-856
        • Richards K.
        • Macdonald A.
        Putting the brakes on the anti-viral response: negative regulators of type I interferon (IFN) production.
        Microbes Infect. 2011; 13: 291-302
        • Mondal M.
        • Guo J.
        • He P.
        • et al.
        Recent advances of oncolytic virus in cancer therapy.
        Hum Vaccin Immunother. 2020; 16: 2389-2402
        • Hu J.C.
        • Coffin R.S.
        • Davis C.J.
        • et al.
        A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor.
        Clin Cancer Res. 2006; 12: 6737-6747
        • Senzer N.N.
        • Kaufman H.L.
        • Amatruda T.
        • et al.
        Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpes virus in patients with unresectable metastatic melanoma.
        J Clin Oncol. 2009; 27: 5763-5771
        • Andtbacka R.H.
        • Kaufman H.L.
        • Collichio F.
        • et al.
        Talimogene Laherparepvec improves durable response rate in patients with advanced melanoma.
        J Clin Oncol. 2015; 33: 2780-2788
        • Anguela X.M.
        • High K.A.
        Entering the modern era of gene therapy.
        Annu Rev Med. 2019; 70: 273-288
        • Hay K.A.
        • Turtle C.J.
        Chimeric antigen receptor (CAR) T cells: lessons learned from targeting of CD19 in B cell malignancies.
        Drugs. 2017; 77: 237-245
        • Maude S.L.
        • Laetsch T.W.
        • Buechner J.
        • et al.
        Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia.
        N Engl J Med. 2018; 378: 439-448
        • Neelapu S.S.
        • Locke F.L.
        • Bartlett N.L.
        • et al.
        Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma.
        N Engl J Med. 2017; 377: 2531-2544
        • Yanez L.
        • Sanchez-Escamilla M.
        • Perales M.
        • et al.
        Cell toxicity: current management and future directions.
        Hemasphere. 2019; 3: e186
        • Memi F.
        • Ntokou A.
        • Papangeli I.
        CRISPR/Cas9 gene-editing: research technologies, clinical applications and ethical considerations.
        Semin Perinatol. 2018; 42: 487-500
        • Chen M.
        • Mao A.
        • Xu M.
        • et al.
        CRISPR-Cas9 for cancer therapy: opportunities and challenges.
        Cancer Lett. 2019; 447: 48-55
        • Kennedy E.M.
        • Kornepati A.V.R.
        • Goldstein M.
        • et al.
        Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease.
        J Virol. 2014; 88: 11965-11972
        • Zhen S.
        • Lu J.
        • Wang L.
        • et al.
        In Vitro and In vivo synergistic therapeutic effect of cisplatin with human papillomavirus16 E6/E7 CRISPR/Cas9 on cervical cancer cell line.
        Transl Oncol. 2016; 9: 498-504
        • Eggermont A.M.M.
        • Blank C.U.
        • Mandala M.
        • et al.
        Adjuvant pembrolizumab versus placebo in resected stage III melanoma.
        N Engl J Med. 2018; 378: 1789-1801
        • Choueiri T.K.
        • Tomczak P.
        • Park S.H.
        • et al.
        Adjuvant pembrolizumab after nephrectomy in renal-cell carcinoma.
        N Engl J Med. 2021; 385: 683-694