Advertisement

Can Pancreatic Organoids Help in the Treatment of Pancreatic Cancer?

      Organoids are increasingly being used in clinical research and decision-making.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Oettle H.
        • Post S.
        • Neuhaus P.
        • et al.
        Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial.
        JAMA. 2007; 297: 267-277
        • Sinn M.
        • Striefler J.K.
        • Sinn B.V.
        • et al.
        Does long-term survival in patients with pancreatic cancer really exist? Results from the CONKO-001 study.
        J Surg Oncol. 2013; 108: 398-402
        • Von Hoff D.D.
        • Ervin T.
        • Arena F.P.
        • et al.
        Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine.
        N Engl J Med. 2013; 369: 1691-1703
        • Neoptolemos J.P.
        • Palmer D.H.
        • Ghaneh P.
        • et al.
        Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial.
        Lancet. 2017; 389: 1011-1024
        • Conroy T.
        • Hammel P.
        • Hebbar M.
        • et al.
        FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer.
        N Engl J Med. 2018; 379: 2395-2406
        • Conroy T.
        • Desseigne F.
        • Ychou M.
        • et al.
        FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer.
        N Engl J Med. 2011; 364: 1817-1825
        • Kasumova G.G.
        • Conway W.C.
        • Tseng J.F.
        The role of venous and arterial resection in pancreatic cancer surgery.
        Ann Surg Oncol. 2018; 25: 51-58
        • Giuliani T.
        • López Rubio M.
        • Montalvá Oron E.
        • et al.
        Extended distal pancreatectomy with thoracic wall resection after neoadjuvant FOLFIRINOX: is there a limit of resection for pancreatic cancer after downstaging?.
        Ann Hepatobiliary Pancreat Surg. 2020; 24: 90
        • Sakaguchi T.
        • Valente R.
        • Tanaka K.
        • et al.
        Surgical treatment of metastatic pancreatic ductal adenocarcinoma: a review of current literature.
        Pancreatology. 2019; 19: 672-680
        • Golan T.
        • Hammel P.
        • Reni M.
        • et al.
        Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer.
        N Engl J Med. 2019; 381: 317-327
        • Le D.T.
        • Uram J.N.
        • Wang H.
        • et al.
        PD-1 blockade in tumors with mismatch-repair deficiency.
        N Engl J Med. 2015; 372: 2509-2520
        • Pishvaian M.J.
        • Bender R.J.
        • Halverson D.
        • et al.
        Molecular profiling of patients with pancreatic cancer: initial results from the know your tumor initiative.
        Clin Cancer Res. 2018; 24: 5018-5027
        • Pishvaian M.J.
        • Blais E.M.
        • Brody J.R.
        • et al.
        Overall survival in patients with pancreatic cancer receiving matched therapies following molecular profiling: a retrospective analysis of the know your tumor registry trial.
        Lancet Oncol. 2020; 21: 508-518
        • Von Hoff D.D.
        • Stephenson J.J.
        • Rosen P.
        • et al.
        Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers.
        J Clin Oncol. 2010; 28: 4877-4883
        • Collisson E.A.
        • Sadanandam A.
        • Olson P.
        • et al.
        Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy.
        Nat Med. 2011; 17: 500-503
        • Moffitt R.A.
        • Marayati R.
        • Flate E.L.
        • et al.
        Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma.
        Nat Genet. 2015; 47: 1168-1178
        • Bailey P.
        • Chang D.K.
        • Nones K.
        • et al.
        Genomic analyses identify molecular subtypes of pancreatic cancer.
        Nature. 2016; 531: 47-52
        • Mizrahi J.D.
        • Surana R.
        • Valle J.W.
        • et al.
        Pancreatic cancer.
        Lancet. 2020; 395: 2008-2020
        • Tuveson D.
        • Clevers H.
        Cancer modeling meets human organoid technology.
        Science. 2019; 364: 952-955
        • Bleijs M.
        • Wetering M.
        • Clevers H.
        • et al.
        Xenograft and organoid model systems in cancer research.
        EMBO J. 2019; 38: 1-11
        • Neal J.T.
        • Li X.
        • Zhu J.
        • et al.
        Organoid modeling of the tumor immune microenvironment.
        Cell. 2018; 175: 1972-1988.e16
        • Knudsen E.S.
        • Balaji U.
        • Mannakee B.
        • et al.
        Pancreatic cancer cell lines as patient-derived avatars: genetic characterisation and functional utility.
        Gut. 2018; 67: 508-520
        • Driehuis E.
        • Van Hoeck A.
        • Moore K.
        • et al.
        Pancreatic cancer organoids recapitulate disease and allow personalized drug screening.
        Proc Natl Acad Sci U S A. 2019; 116: 26580-26590
        • Seppälä T.T.
        • Zimmerman J.W.
        • Sereni E.
        • et al.
        Patient-derived organoid pharmacotyping is a clinically tractable strategy for precision medicine in pancreatic cancer.
        Ann Surg. 2020; 272: 427-435
        • Roerink S.F.
        • Sasaki N.
        • Lee-Six H.
        • et al.
        Intra-tumour diversification in colorectal cancer at the single-cell level.
        Nature. 2018; 556: 437-462
        • Chen K.Y.
        • Srinivasan T.
        • Lin C.
        • et al.
        Single-cell transcriptomics reveals heterogeneity and drug response of human colorectal cancer organoids.
        Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS. 2018; 2018: 2378-2381
        • Fujii M.
        • Clevers H.
        • Sato T.
        Modeling human digestive diseases with CRISPR-Cas9–modified organoids.
        Gastroenterology. 2019; 156: 562-576
        • Li X.
        • Francies H.E.
        • Secrier M.
        • et al.
        Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics.
        Nat Commun. 2018; 9: 1-13
        • Fujii M.
        • Shimokawa M.
        • Date S.
        • et al.
        A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis.
        Cell Stem Cell. 2016; 18: 827-838
        • Yan H.H.N.
        • Siu H.C.
        • Ho S.L.
        • et al.
        Organoid cultures of early-onset colorectal cancers reveal distinct and rare genetic profiles.
        Gut. 2020; 69: 2165-2179
        • Juiz N.
        • Elkaoutari A.
        • Bigonnet M.
        • et al.
        Basal-like and classical cells coexistence in pancreatic cancer revealed by single cell analysis.
        bioRxiv. 2020; https://doi.org/10.1101/2020.01.07.897454
        • Juiz N.
        • Elkaoutari A.
        • Bigonnet M.
        • et al.
        Basal-like and classical cells coexist in pancreatic cancer revealed by single-cell analysis on biopsy-derived pancreatic cancer organoids from the classical subtype.
        FASEB J. 2020; 34: 12214-12228
        • Krieger T.
        • LeBlanc-Soto S.
        • Jabs J.
        • et al.
        Single-cell analysis of patient-derived PDAC organoids reveals cell state heterogeneity and a conserved developmental hierarchy.
        Christian Conrad bioRxiv. 2020;
        • Hidalgo M.
        • Bruckheimer E.
        • Rajeshkumar N.V.
        • et al.
        A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer.
        Mol Cancer Ther. 2011; 10: 1311-1316
        • Tiriac H.
        • Bucobo J.C.
        • Tzimas D.
        • et al.
        Successful creation of pancreatic cancer organoids by means of EUS-guided fine-needle biopsy sampling for personalized cancer treatment.
        Gastrointest Endosc. 2018; 87: 1474-1480
        • Lau H.C.H.
        • Kranenburg O.
        • Xiao H.
        • et al.
        Organoid models of gastrointestinal cancers in basic and translational research.
        Nat Rev Gastroenterol Hepatol. 2020; 17: 203-222
        • Ianevski A.
        • Giri A.K.
        • Aittokallio T.
        SynergyFinder 2.0: visual analytics of multi-drug combination synergies.
        Nucleic Acids Res. 2020; 48: W488-W493
        • Schuster B.
        • Junkin M.
        • Kashaf S.S.
        • et al.
        Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids.
        Nat Commun. 2020; 11: 1-12
        • Tiriac H.
        • Belleau P.
        • Engle D.D.
        • et al.
        Organoid profiling identifies common responders to chemotherapy in pancreatic cancer.
        Cancer Discov. 2018; 8: 1112-1129
        • Aberle M.R.
        • Burkhart R.A.
        • Tiriac H.
        • et al.
        Patient-derived organoid models help define personalized management of gastrointestinal cancer.
        Br J Surg. 2018; 105: e48-e60