Advertisement

The Role of Artificial Intelligence in Surgery

  • Daniel A. Hashimoto
    Correspondence
    Corresponding author.
    Affiliations
    Surgical AI & Innovation Laboratory, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 15 Parkman Street, WAC460, Boston, MA 02114, USA
    Search for articles by this author
  • Author Footnotes
    1 Present address: 37 Joy Street, Apartment 7, Boston, MA 02114.
    Thomas M. Ward
    Footnotes
    1 Present address: 37 Joy Street, Apartment 7, Boston, MA 02114.
    Affiliations
    Surgical AI & Innovation Laboratory, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 15 Parkman Street, WAC460, Boston, MA 02114, USA
    Search for articles by this author
  • Author Footnotes
    2 Present address: 500 Atlantic Avenue, Apartment 16C, Boston, MA 02210.
    Ozanan R. Meireles
    Footnotes
    2 Present address: 500 Atlantic Avenue, Apartment 16C, Boston, MA 02210.
    Affiliations
    Surgical AI & Innovation Laboratory, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 15 Parkman Street, WAC460, Boston, MA 02114, USA
    Search for articles by this author
  • Author Footnotes
    1 Present address: 37 Joy Street, Apartment 7, Boston, MA 02114.
    2 Present address: 500 Atlantic Avenue, Apartment 16C, Boston, MA 02210.
      Artificial intelligence (AI) as a term has been used indiscriminately by marketers and media, and surgeons should approach usage of the term with healthy skepticism.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bellman R.
        An introduction to artificial intelligence: can computers think?.
        Thomson Course Technology, 1978
        • Administration USF&. D, U.S. Food & Drug Administration
        FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems.
        Case Med Res. 2018; https://doi.org/10.31525/fda2-ucm604357.htm
        • Hashimoto D.A.
        • Rosman G.
        • Rus D.
        • et al.
        Artificial Intelligence in Surgery: Promises and Perils.
        Ann Surg. 2018; 268: 70-76
        • Hashimoto D.A.
        • Witkowski E.
        • Gao L.
        • et al.
        Anesthesiology. 2019; 1https://doi.org/10.1097/aln.0000000000002960
        • Avanzolini G.
        • Barbini P.
        • Gnudi G.
        Unsupervised learning and discriminant analysis applied to identification of high risk postoperative cardiac patients.
        Int J Biomed Comput. 1990; 25: 207-221
        • DiPietro R.
        • Hager G.D.
        Unsupervised learning for surgical motion by learning to predict the future.
        in: Medical image computing and computer assisted intervention – MICCAI 2018. 2018: 281-288https://doi.org/10.1007/978-3-030-00937-3_33
        • Skinner B.F.
        The behavior of organisms: an experimental analysis.
        B. F. Skinner Foundation, 1990
        • Silver D.
        • Schrittwieser J.
        • Simonyan K.
        • et al.
        Mastering the game of Go without human knowledge.
        Nature. 2017; 550: 354-359
        • Hebb D.O.
        The organization of behavior.
        Psychology Press, New York2005https://doi.org/10.4324/9781410612403
        • Natarajan P.
        • Frenzel J.C.
        • Smaltz D.H.
        Demystifying big data and machine learning for healthcare.
        CRC Press, Boca Raton (FL)2017https://doi.org/10.1201/9781315389325
        • Esteva A.
        • Robicquet A.
        • Ramsundar B.
        • et al.
        A guide to deep learning in healthcare.
        Nat Med. 2019; 25: 24-29
        • Grzybowski A.
        • Brona P.
        • Lim G.
        • et al.
        Artificial intelligence for diabetic retinopathy screening: a review.
        Eye. 2019; https://doi.org/10.1038/s41433-019-0566-0
        • Esteva A.
        • Kuprel B.
        • Novoa R.A.
        • et al.
        Dermatologist-level classification of skin cancer with deep neural networks.
        Nature. 2017; 542: 115-118
        • Rodas N.L.
        • Padoy N.
        Augmented reality for reducing intraoperative radiation exposure to patients and clinicians during X-ray guided procedures.
        in: Peters T.M. Linte C.A. Yaniv Z. Mixed and augmented reality in medicine. CRC Press, Boca Raton (FL)2018: 217-229https://doi.org/10.1201/9781315157702-15
        • Nadkarni P.M.
        • Ohno-Machado L.
        • Chapman W.W.
        Natural language processing: an introduction.
        J Am Med Inform Assoc. 2011; 18: 544-551
        • Hughes K.S.
        • Zhou J.
        • Bao Y.
        • et al.
        Natural language processing to facilitate breast cancer research and management.
        Breast J. 2020; 26: 92-99
        • Zunic A.
        • Corcoran P.
        • Spasic I.
        Sentiment analysis in health and well-being: systematic review.
        JMIR Med Inform. 2020; 8: e16023
        • Shen F.
        • Larson D.W.
        • Naessens J.M.
        • et al.
        Detection of surgical site infection utilizing automated feature generation in clinical notes.
        Int J Healthc Inf Syst Inform. 2019; 3: 267-282
        • Healey M.A.
        • Shackford S.R.
        • Osler T.M.
        • et al.
        Complications in surgical patients.
        Arch Surg. 2002; 137 ([discussion: 617–8]): 611-617
        • Lee T.H.
        • Marcantonio E.R.
        • Mangione C.M.
        • et al.
        Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery.
        Circulation. 1999; 100: 1043-1049
        • Gupta P.K.
        • Gupta H.
        • Sundaram A.
        • et al.
        Development and validation of a risk calculator for prediction of cardiac risk after surgery.
        Circulation. 2011; 124: 381-387
        • POISE Study Group
        • Devereaux P.J.
        • Yang H.
        • et al.
        Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial.
        Lancet. 2008; 371: 1839-1847
        • Wijeysundera D.N.
        • Pearse R.M.
        • Shulman M.A.
        • et al.
        Assessment of functional capacity before major non-cardiac surgery: an international, prospective cohort study.
        Lancet. 2018; 391: 2631-2640
        • Wolters U.
        • Wolf T.
        • Stützer H.
        • et al.
        ASA classification and perioperative variables as predictors of postoperative outcome.
        Br J Anaesth. 1996; 77: 217-222
        • Owens W.D.
        • Felts J.A.
        • Spitznagel Jr., E.L.
        ASA physical status classifications: a study of consistency of ratings.
        Anesthesiology. 1978; 49: 239-243
        • Bilimoria K.Y.
        • Liu Y.
        • Paruch J.L.
        • et al.
        Development and evaluation of the universal ACS NSQIP surgical risk calculator: a decision aid and informed consent tool for patients and surgeons.
        J Am Coll Surg. 2013; 217: 833-842.e1-3
        • Corey K.M.
        • Kashyap S.
        • Lorenzi E.
        • et al.
        Development and validation of machine learning models to identify high-risk surgical patients using automatically curated electronic health record data (Pythia): A retrospective, single-site study.
        PLoS Med. 2018; 15: e1002701
        • Bihorac A.
        • Ozrazgat-Baslanti T.
        • Ebadi A.
        • et al.
        MySurgeryRisk: development and validation of a machine-learning risk algorithm for major complications and death after surgery.
        Ann Surg. 2019; 269: 652-662
        • Bertsimas D.
        • Dunn J.
        • Velmahos G.C.
        • et al.
        Surgical risk is not linear.
        Ann Surg. 2018; 268: 574-583
        • Birkmeyer J.D.
        • Stukel T.A.
        • Siewers A.E.
        • et al.
        Surgeon volume and operative mortality in the United States.
        ACC Curr J Rev. 2004; 13: 59
        • Birkmeyer J.D.
        • Finks J.F.
        • O’Reilly A.
        • et al.
        Surgical skill and complication rates after bariatric surgery.
        N Engl J Med. 2013; 369: 1434-1442
        • Bonrath E.M.
        • Gordon L.E.
        • Grantcharov T.P.
        Characterising “near miss” events in complex laparoscopic surgery through video analysis.
        BMJ Qual Saf. 2015; 24: 516-521
        • Krizhevsky A.
        • Sutskever I.
        • Hinton G.E.
        ImageNet classification with deep convolutional neural networks.
        Commun ACM. 2017; 60: 84-90
        • Hashimoto D.A.
        • Rosman G.
        • Witkowski E.R.
        • et al.
        Computer vision analysis of intraoperative video: automated recognition of operative steps in laparoscopic sleeve gastrectomy.
        Ann Surg. 2019; 270: 414-421
        • Kannan S.
        • Yengera G.
        • Mutter D.
        • et al.
        Future-state predicting LSTM for early surgery type recognition.
        IEEE Trans Med Imaging. 2019; https://doi.org/10.1109/TMI.2019.2931158
        • Kitaguchi D.
        • Takeshita N.
        • Matsuzaki H.
        • et al.
        Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the convolutional neural network-based deep learning approach.
        Surg Endosc. 2019; https://doi.org/10.1007/s00464-019-07281-0
        • Twinanda A.P.
        • Yengera G.
        • Mutter D.
        • et al.
        RSDNet: learning to predict remaining surgery duration from laparoscopic videos without manual annotations.
        IEEE Trans Med Imaging. 2019; 38: 1069-1078
        • Mascagni P.
        • Fiorillo C.
        • Urade T.
        • et al.
        Formalizing video documentation of the Critical View of Safety in laparoscopic cholecystectomy: a step towards artificial intelligence assistance to improve surgical safety.
        Surg Endosc. 2019; https://doi.org/10.1007/s00464-019-07149-3