Advertisement

Tissue Engineering

      Tissue engineering (TE) is a rapidly growing, interdisciplinary field that is devoted to the manufacture of intact tissue and organ constructs by imitating natural biological development.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Orlando G.
        • Wood K.J.
        • De Coppi P.
        • et al.
        Regenerative medicine as applied to general surgery.
        Ann Surg. 2012; 255: 867-880
        • Nerem R.M.
        The challenge of imitating nature.
        in: Lanza R. Langer R. Vacanti J. Principles of tissue engineering. 3rd edition. Elsevier Academic Press, Burlington (MA)2007: 7-14
        • Wong V.W.
        • Wan D.C.
        • Gurtner G.C.
        • et al.
        Regenerative surgery: tissue engineering in general surgical practice.
        World J Surg. 2012; 36: 2288-2299
        • Orlando G.
        • Wood K.J.
        • Stratta R.J.
        • et al.
        Regenerative medicine and organ transplantation: past, present, and future.
        Transplantation. 2011; 91: 1310-1317
        • Orlando G.
        • Baptista P.
        • Birchall M.
        • et al.
        Regenerative medicine as applied to solid organ transplantation: current status and future challenges.
        Transpl Int. 2011; 24: 223-232
        • Shinoka T.
        • Imai Y.
        • Ikada Y.
        Transplantation of a tissue-engineered pulmonary artery.
        N Engl J Med. 2001; 344: 532-533
        • Matsumura G.
        • Hibino N.
        • Ikada Y.
        • et al.
        Successful application of tissue engineered vascular autografts: clinical experience.
        Biomaterials. 2003; 24: 2303-2308
        • Shin'oka T.
        • Matsumura G.
        • Hibino N.
        • et al.
        Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells.
        J Thorac Cardiovasc Surg. 2005; 129: 1330-1338
        • Hibino N.
        • Mcgillicuddy E.
        • Matsumura G.
        • et al.
        Late-term results of tissue-engineered vascular grafts in humans.
        J Thorac Cardiovasc Surg. 2010; 139 (436.e1–2): 431-436
        • Mcallister T.N.
        • Maruszewski M.
        • Garrido S.A.
        • et al.
        Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study.
        Lancet. 2009; 373: 1440-1446
        • L'heureux N.
        • Mcallister T.N.
        • De la Fuente L.M.
        Tissue-engineered blood vessel for adult arterial revascularization.
        N Engl J Med. 2007; 357: 1451-1453
        • Quint C.
        • Arief M.
        • Muto A.
        • et al.
        Allogeneic human tissue-engineered blood vessel.
        J Vasc Surg. 2012; 55: 790-798
        • Samuel R.
        • Daheron L.
        • Liao S.
        • et al.
        Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells.
        Proc Natl Acad Sci U S A. 2013; 110: 12774-12779
        • Atala A.
        • Bauer S.B.
        • Soker S.
        • et al.
        Tissue-engineered autologous bladders for patients needing cystoplasty.
        Lancet. 2006; 367: 1241-1246
        • Zhang P.
        • Luo X.
        • Wang H.
        Clinical transplantation of a tissue-engineered airway.
        Lancet. 2009; 373: 718
        • Baiguera S.
        • Birchall M.A.
        • Macchiarini P.
        Tissue-engineered tracheal transplantation.
        Transplantation. 2010; 89: 485-491
        • Berg M.
        • Ejnell H.
        • Kovács A.
        • et al.
        Replacement of a tracheal stenosis with a tissue-engineered human trachea using autologous stem cells: a case report.
        Tissue Eng Part A. 2014; 20: 389-397
        • Raya-Rivera A.
        • Esquiliano D.R.
        • Yoo J.J.
        • et al.
        Tissue-engineered autologous urethras for patients who need reconstruction: an observational study.
        Lancet. 2011; 377: 1175-1182
        • Cebotari S.
        • Lichtenberg A.
        • Tudorache I.
        • et al.
        Clinical application of tissue engineered human heart valves using autologous progenitor cells.
        Circulation. 2006; 114: I132-I137
        • Ott H.C.
        • Matthiesen T.S.
        • Goh S.K.
        • et al.
        Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart.
        Nat Med. 2008; 14: 213-221
        • Steinhoff G.
        • Stock U.
        • Karim N.
        • et al.
        Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue.
        Circulation. 2000; 102: III50-III55
        • Emmert M.Y.
        • Weber B.
        • Behr L.
        • et al.
        Transcatheter aortic valve implantation using anatomically oriented, marrow stromal cell-based, stented, tissue-engineered heart valves: technical considerations and implications for translational cell-based heart valve concepts.
        Eur J Cardiothorac Surg. 2014; 45: 61-68
        • Uygun B.E.
        • Soto-Gutierrez A.
        • Yagi H.
        • et al.
        Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix.
        Nat Med. 2010; 16: 814-820
        • Baptista P.M.
        • Siddiqui M.M.
        • Lozier G.
        • et al.
        The use of whole organ decellularization for the generation of a vascularized liver organoid.
        Hepatology. 2011; 53: 604-617
        • Booth C.
        • Soker T.
        • Baptista P.
        • et al.
        Liver bioengineering: current status and future perspectives.
        World J Gastroenterol. 2012; 18: 6926-6934
        • Soto-gutierrez A.
        • Zhang L.
        • Medberry C.
        • et al.
        A whole-organ regenerative medicine approach for liver replacement.
        Tissue Eng Part C Methods. 2011; 17: 677-686
        • Ott H.C.
        • Clippinger B.
        • Conrad C.
        • et al.
        Regeneration and orthotopic transplantation of a bioartificial lung.
        Nat Med. 2010; 16: 927-933
        • Maghsoudlou P.
        • Georgiades F.
        • Tyraskis A.
        • et al.
        Preservation of micro-architecture and angiogenic potential in a pulmonary acellular matrix obtained using intermittent intra-tracheal flow of detergent enzymatic treatment.
        Biomaterials. 2013; 34: 6638-6648
        • Orlando G.
        • Booth C.
        • Wang Z.
        • et al.
        Discarded human kidneys as a source of ECM scaffold for kidney regeneration technologies.
        Biomaterials. 2013; 34: 5915-5925
        • Mirmalek-Sani S.H.
        • Orlando G.
        • Mcquilling J.P.
        • et al.
        Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering.
        Biomaterials. 2013; 34: 5488-5495
        • Totonelli G.
        • Maghsoudlou P.
        • Garriboli M.
        • et al.
        A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration.
        Biomaterials. 2012; 33: 3401-3410
        • Murphy S.V.
        • Atala A.
        Organ engineering–combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation.
        Bioessays. 2013; 35: 163-172
        • Koh C.J.
        Tissue engineering, stem cells, and cloning: opportunities for regenerative medicine.
        J Am Soc Nephrol. 2004; 15: 1113-1125
        • Weissman I.L.
        Stem cells: units of development, units of regeneration, and units in evolution.
        Cell. 2000; 100: 157-168
        • Brivanlou A.H.
        • Gage F.H.
        • Jaenisch R.
        • et al.
        Stem cells. Setting standards for human embryonic stem cells.
        Science. 2003; 300: 913-916
        • Kehat I.
        • Kenyagin-Karsenti D.
        • Snir M.
        • et al.
        Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes.
        J Clin Invest. 2001; 108: 407-414
        • Levenberg S.
        • Golub J.S.
        • Amit M.
        • et al.
        Endothelial cells derived from human embryonic stem cells.
        Proc Natl Acad Sci U S A. 2002; 99: 4391-4396
        • Reubinoff B.E.
        • Itsykson P.
        • Turetsky T.
        • et al.
        Neural progenitors from human embryonic stem cells.
        Nat Biotechnol. 2001; 19: 1134-1140
        • Assady S.
        • Maor G.
        • Amit M.
        • et al.
        Insulin production by human embryonic stem cells.
        Diabetes. 2001; 50: 1691-1697
        • Narayanan K.
        • Schumacher K.M.
        • Tasnim F.
        • et al.
        Human embryonic stem cells differentiate into functional renal proximal tubular-like cells.
        Kidney Int. 2013; 83: 593-603
        • Zhang F.
        • Citra F.
        • Wang D.A.
        Prospects of induced pluripotent stem cell technology in regenerative medicine.
        Tissue Eng Part B Rev. 2011; 17: 115-124
        • Li L.
        • Xie T.
        Stem cell niche: structure and function.
        Annu Rev Cell Dev Biol. 2005; 21: 605-631
        • Fuchs E.
        Skin stem cells: rising to the surface.
        J Cell Biol. 2008; 180: 273-284
        • Fraser J.K.
        • Wulur I.
        • Alfonso Z.
        • et al.
        Fat tissue: an underappreciated source of stem cells for biotechnology.
        Trends Biotechnol. 2006; 24: 150-154
        • Giangreco A.
        • Reynolds S.D.
        • Stripp B.R.
        Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction.
        Am J Pathol. 2002; 161: 173-182
        • Van der Flier L.G.
        • Clevers H.
        Stem cells, self-renewal, and differentiation in the intestinal epithelium.
        Annu Rev Physiol. 2009; 71: 241-260
        • Cilento B.G.
        • Freeman M.R.
        • Schneck F.X.
        • et al.
        Phenotypic and cytogenetic characterization of human bladder urothelia expanded in vitro.
        J Urol. 1994; 152: 665-670
        • Beltrami A.P.
        • Barlucchi L.
        • Torella D.
        • et al.
        Adult cardiac stem cells are multipotent and support myocardial regeneration.
        Cell. 2003; 114: 763-776
        • Bussolati B.
        • Bruno S.
        • Grange C.
        • et al.
        Isolation of renal progenitor cells from adult human kidney.
        Am J Pathol. 2005; 166: 545-555
        • Gimble J.M.
        • Katz A.J.
        • Bunnell B.A.
        Adipose-derived stem cells for regenerative medicine.
        Circ Res. 2007; 100: 1249-1260
        • Mendel T.A.
        • Clabough E.B.
        • Kao D.S.
        • et al.
        Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy.
        PLoS One. 2013; 8: e65691
        • Atala A.
        Autologous cell transplantation for urologic reconstruction.
        J Urol. 1998; 159: 2-3
        • Zhang Y.
        • Mcneill E.
        • Tian H.
        • et al.
        Urine derived cells are a potential source for urological tissue reconstruction.
        J Urol. 2008; 180: 2226-2233
        • Fong E.L.
        • Watson B.M.
        • Kasper F.K.
        • et al.
        Building bridges: leveraging interdisciplinary collaborations in the development of biomaterials to meet clinical needs.
        Adv Mater. 2012; 24: 4995-5013
        • Lu L.
        • Zhu X.
        • Valenzuela R.G.
        • et al.
        Biodegradable polymer scaffolds for cartilage tissue engineering.
        Clin Orthop Relat Res. 2001; : S251-S270
        • Hubbell J.A.
        Materials as morphogenetic guides in tissue engineering.
        Curr Opin Biotechnol. 2003; 14: 551-558
        • Orlando G.
        • Soker S.
        • Stratta R.J.
        Organ bioengineering and regeneration as the new Holy Grail for organ transplantation.
        Ann Surg. 2013; 258: 221-232
        • Chen F.
        • Yoo J.J.
        • Atala A.
        Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair.
        Urology. 1999; 54: 407-410
        • Anderson J.M.
        • Rodriguez A.
        • Chang D.T.
        Foreign body reaction to biomaterials.
        Semin Immunol. 2008; 20: 86-100
        • Lutolf M.P.
        • Gilbert P.M.
        • Blau H.M.
        Designing materials to direct stem-cell fate.
        Nature. 2009; 462: 433-441
        • Hollister S.J.
        Porous scaffold design for tissue engineering.
        Nat Mater. 2005; 4: 518-524
        • Jain R.K.
        • Au P.
        • Tam J.
        • et al.
        Engineering vascularized tissue.
        Nat Biotechnol. 2005; 23: 821-823
        • Levenberg S.
        • Rouwkema J.
        • Macdonald M.
        • et al.
        Engineering vascularized skeletal muscle tissue.
        Nat Biotechnol. 2005; 23: 879-884
        • Matthews J.A.
        • Sala F.G.
        • Speer A.L.
        • et al.
        VEGF optimizes the formation of tissue-engineered small intestine.
        Regen Med. 2011; 6: 559-567
        • Fonder M.A.
        • Lazarus G.S.
        • Cowan D.A.
        • et al.
        Treating the chronic wound: a practical approach to the care of nonhealing wounds and wound care dressings.
        J Am Acad Dermatol. 2008; 58: 185-206
        • Leclerc T.
        • Thepenier C.
        • Jault P.
        • et al.
        Cell therapy of burns.
        Cell Prolif. 2011; 44: 48-54
        • Place E.S.
        • Evans N.D.
        • Stevens M.M.
        Complexity in biomaterials for tissue engineering.
        Nat Mater. 2009; 8: 457-470
        • Jeng J.C.
        • Fidler P.E.
        • Sokolich J.C.
        • et al.
        Seven years' experience with Integra as a reconstructive tool.
        J Burn Care Res. 2007; 28: 120-126
        • Sun G.
        • Zhang X.
        • Shen Y.I.
        • et al.
        Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing.
        Proc Natl Acad Sci U S A. 2011; 108: 20976-20981
        • Kirker K.R.
        • Luo Y.
        • Nielson J.H.
        • et al.
        Glycosaminoglycan hydrogel films as bio-interactive dressings for wound healing.
        Biomaterials. 2002; 23: 3661-3671
        • Lineen E.
        • Namias N.
        Biologic dressing in burns.
        J Craniofac Surg. 2008; 19: 923-928
        • Roh C.
        • Lyle S.
        Cutaneous stem cells and wound healing.
        Pediatr Res. 2006; 59: 100R-103R
        • Zuk P.A.
        • Zhu M.
        • Mizuno H.
        • et al.
        Multilineage cells from human adipose tissue: implications for cell-based therapies.
        Tissue Eng. 2001; 7: 211-228
        • Hanson S.E.
        • Bentz M.L.
        • Hematti P.
        Mesenchymal stem cell therapy for nonhealing cutaneous wounds.
        Plast Reconstr Surg. 2010; 125: 510-516
        • Schurr M.J.
        • Foster K.N.
        • Centanni J.M.
        • et al.
        Phase I/II clinical evaluation of StrataGraft: a consistent, pathogen-free human skin substitute.
        J Trauma. 2009; 66: 866-873
        • Orlando G.
        • Soker S.
        • Stratta R.J.
        • et al.
        Will regenerative medicine replace transplantation?.
        Cold Spring Harb Perspect Med. 2013; 3 (pii:a015693)
        • Matsumura G.
        • Miyagawa-Tomita S.
        • Shin'oka T.
        • et al.
        First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo.
        Circulation. 2003; 108: 1729-1734
        • Vogel G.
        Trachea transplants test the limits.
        Science. 2013; 340: 266-268
        • Macchiarini P.
        • Jungebluth P.
        • Go T.
        • et al.
        Clinical transplantation of a tissue-engineered airway.
        Lancet. 2008; 372: 2023-2030
        • Gonfiotti A.
        • Jaus M.O.
        • Barale D.
        • et al.
        The first tissue-engineered airway transplantation: 5-year follow-up results.
        Lancet. 2014; 383: 238-244https://doi.org/10.1016/S0140-6736(13)62033-4
        • Elliott M.J.
        • De coppi P.
        • Speggiorin S.
        • et al.
        Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study.
        Lancet. 2012; 380: 994-1000
        • Zopf D.A.
        • Hollister S.J.
        • Nelson M.E.
        • et al.
        Bioresorbable airway splint created with a three-dimensional printer.
        N Engl J Med. 2013; 368: 2043-2045
        • Romagnoli G.
        • De luca M.
        • Faranda F.
        • et al.
        One-step treatment of proximal hypospadias by the autologous graft of cultured urethral epithelium.
        J Urol. 1993; 150: 1204-1207
        • Romagnoli G.
        • De luca M.
        • Faranda F.
        • et al.
        Treatment of posterior hypospadias by the autologous graft of cultured urethral epithelium.
        N Engl J Med. 1990; 323: 527-530
        • Orlando G.
        • Wood K.J.
        • Soker S.
        • et al.
        How regenerative medicine may contribute to the achievement of an immunosuppression-free state.
        Transplantation. 2011; 92: e36-e38
        • Orlando G.
        • Soker S.
        • Wood K.
        Operational tolerance after liver transplantation.
        J Hepatol. 2009; 50: 1247-1257
        • Ross C.L.
        • Booth C.
        • Sanders B.
        • et al.
        Regeneration and bioengineering of transplantable abdominal organs: current status and future challenges.
        Expert Opin Biol Ther. 2013; 13: 103-113
        • Orlando G.
        Regenerative medicine technology applied to gastroenterology: current status and future perspectives.
        World J Gastroenterol. 2012; 18: 6874-6875
        • Orlando G.
        • García-Arrarás J.E.
        • Soker T.
        • et al.
        Regeneration and bioengineering of the gastrointestinal tract: current status and future perspectives.
        Dig Liver Dis. 2012; 44: 714-720
        • Sun Y.
        • Weber K.T.
        Infarct scar: a dynamic tissue.
        Cardiovasc Res. 2000; 46: 250-256
        • Murry C.E.
        • Field L.J.
        • Menasché P.
        Cell-based cardiac repair: reflections at the 10-year point.
        Circulation. 2005; 112: 3174-3183
        • Zimmermann W.H.
        • Schneiderbanger K.
        • Schubert P.
        • et al.
        Tissue engineering of a differentiated cardiac muscle construct.
        Circ Res. 2002; 90: 223-230
        • Shimizu T.
        • Sekine H.
        • Yamato M.
        • et al.
        Cell sheet-based myocardial tissue engineering: new hope for damaged heart rescue.
        Curr Pharm Des. 2009; 15: 2807-2814
        • Christman K.L.
        • Vardanian A.J.
        • Fang Q.
        • et al.
        Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium.
        J Am Coll Cardiol. 2004; 44: 654-660
        • Habib M.
        • Shapira-Schweitzer K.
        • Caspi O.
        • et al.
        A combined cell therapy and in-situ tissue-engineering approach for myocardial repair.
        Biomaterials. 2011; 32: 7514-7523
        • Fazel S.
        • Tang G.H.
        • Angoulvant D.
        • et al.
        Current status of cellular therapy for ischemic heart disease.
        Ann Thorac Surg. 2005; 79: S2238-S2247
        • Fox I.J.
        • Chowdhury J.R.
        • Kaufman S.S.
        • et al.
        Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation.
        N Engl J Med. 1998; 338: 1422-1426
        • Strom S.C.
        • Fisher R.A.
        • Thompson M.T.
        • et al.
        Hepatocyte transplantation as a bridge to orthotopic liver transplantation in terminal liver failure.
        Transplantation. 1997; 63: 559-569
        • Strom S.C.
        • Chowdhury J.R.
        • Fox I.J.
        Hepatocyte transplantation for the treatment of human disease.
        Semin Liver Dis. 1999; 19: 39-48
        • Ambrosino G.
        • Varotto S.
        • Strom S.C.
        • et al.
        Isolated hepatocyte transplantation for Crigler-Najjar syndrome type 1.
        Cell Transplant. 2005; 14: 151-157
        • Kharaziha P.
        • Hellström P.M.
        • Noorinayer B.
        • et al.
        Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I-II clinical trial.
        Eur J Gastroenterol Hepatol. 2009; 21: 1199-1205
        • Pai M.
        • Zacharoulis D.
        • Milicevic M.N.
        • et al.
        Autologous infusion of expanded mobilized adult bone marrow-derived CD34+ cells into patients with alcoholic liver cirrhosis.
        Am J Gastroenterol. 2008; 103: 1952-1958
        • Khan A.A.
        • Shaik M.V.
        • Parveen N.
        • et al.
        Human fetal liver-derived stem cell transplantation as supportive modality in the management of end-stage decompensated liver cirrhosis.
        Cell Transplant. 2010; 19: 409-418
        • Wolfe R.A.
        • Ashby V.B.
        • Milford E.L.
        • et al.
        Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant.
        N Engl J Med. 1999; 341: 1725-1730
        • Abecassis M.
        • Bartlett S.T.
        • Collins A.J.
        • et al.
        Kidney transplantation as primary therapy for end-stage renal disease: a National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (NKF/KDOQITM) conference.
        Clin J Am Soc Nephrol. 2008; 3: 471-480
        • Morigi M.
        • Introna M.
        • Imberti B.
        • et al.
        Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice.
        Stem Cells. 2008; 26: 2075-2082
        • Herrera M.B.
        • Bussolati B.
        • Bruno S.
        • et al.
        Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury.
        Int J Mol Med. 2004; 14: 1035-1041
        • Morigi M.
        • Rota C.
        • Montemurro T.
        • et al.
        Life-sparing effect of human cord blood-mesenchymal stem cells in experimental acute kidney injury.
        Stem Cells. 2010; 28: 513-522
        • Song J.J.
        • Guyette J.P.
        • Gilpin S.E.
        • et al.
        Regeneration and experimental orthotopic transplantation of a bioengineered kidney.
        Nat Med. 2013; 19: 646-651
        • Farney A.C.
        • Hering B.J.
        • Nelson L.
        • et al.
        No late failures of intraportal human islet autografts beyond 2 years.
        Transplant Proc. 1998; 30: 420
        • Omer A.
        • Duvivier-Kali V.
        • Fernandes J.
        • et al.
        Long-term normoglycemia in rats receiving transplants with encapsulated islets.
        Transplantation. 2005; 79: 52-58
        • Schaffellner S.
        • Stadlbauer V.
        • Stiegler P.
        • et al.
        Porcine islet cells microencapsulated in sodium cellulose sulfate.
        Transplant Proc. 2005; 37: 248-252
        • Pareta R.
        • Sanders B.
        • Babbar P.
        • et al.
        Immunoisolation: where regenerative medicine meets solid organ transplantation.
        Expert Rev Clin Immunol. 2012; 8: 685-692
        • Sumi S.
        • Gu Y.
        • Hiura A.
        • et al.
        Stem cells and regenerative medicine for diabetes mellitus.
        Pancreas. 2004; 29: e85-e89
        • Raikwar S.P.
        • Zavazava N.
        Spontaneous in vivo differentiation of embryonic stem cell-derived pancreatic endoderm-like cells corrects hyperglycemia in diabetic mice.
        Transplantation. 2011; 91: 11-20
        • Shimizu H.
        • Ohashi K.
        • Utoh R.
        • et al.
        Bioengineering of a functional sheet of islet cells for the treatment of diabetes mellitus.
        Biomaterials. 2009; 30: 5943-5949
        • De carlo E.
        • Baiguera S.
        • Conconi M.T.
        • et al.
        Pancreatic acellular matrix supports islet survival and function in a synthetic tubular device: in vitro and in vivo studies.
        Int J Mol Med. 2010; 25: 195-202
        • Peloso A.
        • Katari R.
        • Zambon J.P.
        • et al.
        Sisyphus, the Giffen's paradox and the Holy Grail: time for organ transplantation to transition toward a regenerative medicine-focused type of research.
        Expert Rev Clin Immunol. 2013; 9: 883-885
        • Orlando G.
        Transplantation as a subfield of regenerative medicine. Interview by Lauren Constable.
        Expert Rev Clin Immunol. 2011; 7: 137-141
        • Orlando G.
        Immunosuppression-free transplantation reconsidered from a regenerative medicine perspective.
        Expert Rev Clin Immunol. 2012; 8: 179-187