Advertisement
Review Article| Volume 45, ISSUE 1, P341-360, September 2011

Immunotherapy for Metastatic Solid Cancers

      The overwhelming majority of metastatic solid cancers cannot be cured by current systemic chemotherapies. Immunotherapy, a modality able to mediate durable and sometimes complete tumor regression in patients with metastatic melanoma and kidney cancer, is emerging as an alternative or an adjunct to current cancer treatments. Recent developments have enabled the application of immunotherapy to additional cancer types.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • van der Bruggen P.
        • Traversari C.
        • Chomez P.
        • et al.
        A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma.
        Science. 1991; 254: 1643-1647
        • Novellino L.
        • Castelli C.
        • Parmiani G.
        A listing of human tumor antigens recognized by T cells: March 2004 update.
        Cancer Immunol Immunother. 2005; 54: 187-207
        • Mantovani A.
        • Romero P.
        • Palucka A.K.
        • et al.
        Tumour immunity: effector response to tumour and role of the microenvironment.
        Lancet. 2008; 371: 771-783
        • Sakaguchi S.
        • Miyara M.
        • Costantino C.M.
        • et al.
        FOXP3+ regulatory T cells in the human immune system.
        Nat Rev Immunol. 2010; 10: 490-500
        • Nagaraj S.
        • Gabrilovich D.I.
        Myeloid-derived suppressor cells in human cancer.
        Cancer J. 2010; 16: 348-353
        • Peranzoni E.
        • Zilio S.
        • Marigo I.
        • et al.
        Myeloid-derived suppressor cell heterogeneity and subset definition.
        Curr Opin Immunol. 2010; 22: 238-244
        • Zitvogel L.
        • Tesniere A.
        • Kroemer G.
        Cancer despite immunosurveillance: immunoselection and immunosubversion.
        Nat Rev Immunol. 2006; 6: 715-727
        • Smyth M.J.
        • Dunn G.P.
        • Schreiber R.D.
        Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity.
        Adv Immunol. 2006; 90: 1-50
        • Yang J.C.
        • Sherry R.M.
        • Steinberg S.M.
        • et al.
        Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer.
        J Clin Oncol. 2003; 21: 3127-3132
        • Rosenberg S.A.
        • Yang J.C.
        • White D.E.
        • et al.
        Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2: identification of the antigens mediating response.
        Ann Surg. 1998; 228: 307-319
        • Kammula U.S.
        • White D.E.
        • Rosenberg S.A.
        Trends in the safety of high dose bolus interleukin-2 administration in patients with metastatic cancer.
        Cancer. 1998; 83: 797-805
        • Phan G.Q.
        • Attia P.
        • Steinberg S.M.
        • et al.
        Factors associated with response to high-dose interleukin-2 in patients with metastatic melanoma.
        J Clin Oncol. 2001; 19: 3477-3482
        • Wheatley K.
        • Ives N.
        • Eggermont A.
        • et al.
        Interferon- as adjuvant therapy for melanoma: an individual patient data meta-analysis of randomised trials.
        J Clin Oncol ASCO Annual Meeting Proceedings. 2007; 25: 8526
        • Eggermont A.M.
        • Suciu S.
        • Santinami M.
        • et al.
        Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised phase III trial.
        Lancet. 2008; 372: 117-126
        • Zang X.
        • Allison J.P.
        The B7 family and cancer therapy: costimulation and coinhibition.
        Clin Cancer Res. 2007; 13: 5271-5279
        • Phan G.Q.
        • Yang J.C.
        • Sherry R.M.
        • et al.
        Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma.
        Proc Natl Acad Sci USA. 2003; 100: 8372-8377
        • Prieto P.A.
        • Yang J.C.
        • Sherry R.M.
        • et al.
        Cytotoxic T lymphocyte associated antigen 4 blockade with ipilimumab: long-term follow-up of 179 with metastatic melanoma.
        J Clin Oncol. 2010; 28: 8544
        • Phan G.Q.
        • Weber J.S.
        • Sondak V.K.
        CTLA-4 blockade with monoclonal antibodies in patients with metastatic cancer: surgical issues.
        Ann Surg Oncol. 2008; 15: 3014-3021
        • Hodi F.S.
        • O’Day S.J.
        • McDermott D.F.
        • et al.
        Improved survival with ipilimumab in patients with metastatic melanoma.
        N Engl J Med. 2010; 363: 711-723
        • Hersh E.M.
        • Weber J.S.
        • Powderly J.D.
        • et al.
        Disease control and long-term survival in chemotherapy-naive patients with advanced melanoma treated with ipilimumab (MDX- 010) with or without dacarbazine.
        J Clin Oncol ASCO Annual Meeting Proceedings. 2008; 26: 9022
        • Yang J.C.
        • Hughes M.
        • Kammula U.
        • et al.
        Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis.
        J Immunother. 2007; 30: 825-830
        • Small E.J.
        • Tchekmedyian N.S.
        • Rini B.I.
        • et al.
        A pilot trial of CTLA-4 blockade with human anti-CTLA-4 in patients with hormone-refractory prostate cancer.
        Clin Cancer Res. 2007; 13: 1810-1815
        • Royal R.E.
        • Levy C.
        • Turner K.
        • et al.
        Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma.
        J Immunother. 2010; 33: 828-833
        • Kirkwood J.M.
        • Lorigan P.
        • Hersey P.
        • et al.
        Phase II trial of tremelimumab (CP-675,206) in patients with advanced refractory or relapsed melanoma.
        Clin Cancer Res. 2010; 16: 1042-1048
        • Chung K.Y.
        • Gore I.
        • Fong L.
        • et al.
        Phase II study of the anti-cytotoxic T-lymphocyte-associated antigen 4 monoclonal antibody, tremelimumab, in patients with refractory metastatic colorectal cancer.
        J Clin Oncol. 2010; 28: 3485-3490
        • Hamanishi J.
        • Mandai M.
        • Iwasaki M.
        • et al.
        Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer.
        Proc Natl Acad Sci U S A. 2007; 104: 3360-3365
        • Thompson R.H.
        • Kuntz S.M.
        • Leibovich B.C.
        • et al.
        Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up.
        Cancer Res. 2006; 66: 3381-3385
        • Brahmer J.R.
        • Drake C.G.
        • Wollner I.
        • et al.
        Phase I study of single-agent antiprogrammed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates.
        J Clin Oncol. 2010; 28: 3167-3175
        • Petrella T.M.
        • Tozer R.
        • Belanger K.
        • et al.
        Interleukin-21 (IL-21) activity in patients (pts) with metastatic melanoma (MM).
        J Clin Oncol ASCO Annual Meeting Proceedings. 2010; 28: 8507
        • Colombo M.P.
        • Trinchieri G.
        Interleukin-12 in antitumor immunity and immunotherapy.
        Cytokine Growth Factor Rev. 2002; 13: 155-168
        • Kerkar S.P.
        • Muranski P.
        • Kaiser A.
        • et al.
        Tumor-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts.
        Cancer Res. 2010; 70: 6725-6734
        • Frazer I.H.
        • Leggatt G.R.
        • Mattarollo S.R.
        Prevention and treatment of papillomavirus-related cancers through immunization.
        Annu Rev Immunol. 2011; 29: 111-138
        • Harper D.M.
        • Franco E.L.
        • Wheeler C.M.
        • et al.
        Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial.
        Lancet. 2006; 367: 1247-1255
        • Rosenberg S.A.
        • Yang J.C.
        • Restifo N.P.
        Cancer immunotherapy: moving beyond current vaccines.
        Nat Med. 2004; 10: 909-915
        • Rosenberg S.A.
        • Sherry R.M.
        • Morton K.E.
        • et al.
        Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma.
        J Immunol. 2005; 175: 6169-6176
        • Klebanoff C.A.
        • Acquavella N.
        • Yu Z.
        • et al.
        Therapeutic cancer vaccines: are we there yet?.
        Immunol Rev. 2011; 239: 27-44
        • Faries M.B.
        • Morton D.L.
        Therapeutic vaccines for melanoma: current status.
        BioDrugs. 2005; 19: 247-260
        • Neninger V.E.
        • de la Torre A.
        • Osorio R.M.
        • et al.
        Phase II randomized controlled trial of an epidermal growth factor vaccine in advanced non-small-cell lung cancer.
        J Clin Oncol. 2008; 26: 1452-1458
        • Butts C.
        • Murray N.
        • Maksymiuk A.
        • et al.
        Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer.
        J Clin Oncol. 2005; 23: 6674-6681
        • Giaccone G.
        • Debruyne C.
        • Felip E.
        • et al.
        Phase III study of adjuvant vaccination with Bec2/bacille Calmette-Guerin in responding patients with limited-disease small-cell lung cancer (European Organisation for Research and Treatment of Cancer 08971-08971B; Silva Study).
        J Clin Oncol. 2005; 23: 6854-6864
        • Amato R.J.
        • Hawkins R.E.
        • Kaufman H.L.
        • et al.
        Vaccination of metastatic renal cancer patients with MVA-5T4: a randomized, double-blind, placebo-controlled phase III study.
        Clin Cancer Res. 2010; 16: 5539-5547
        • Testori A.
        • Richards J.
        • Whitman E.
        • et al.
        Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician’s choice of treatment for stage IV melanoma: the C-100-21 Study Group.
        J Clin Oncol. 2008; 26: 955-962
      1. Higano C, Saad F, Somer B, et al. A phase III trial of GVAX immunotherapy for prostate cancer versus docetaxel plus prednisone in asymptomatic, castration-resistant prostate cancer (CRPC). ASCO Genitourinary Cancers Symposium. Orlando (Florida), February 26–28, [abstract No: LBA150].

      2. Small EJ, Demkow T, Gerritsen WR, et al. A phase III trial of GVAX immunotherapy for prostate cancer in combination with docetaxel versus docetaxel plus prednisone in symptomatic, castration-resistant prostate cancer (CRPC). ASCO Genitourinary Cancers Symposium [Abstract No. 7]. 2009.

        • Schwartzentruber D.J.
        • Lawson D.
        • Richards J.
        • et al.
        A phase III multi-institutional randomized study of immunization with the gp100:209-217(210M) peptide followed by high-dose IL-2 compared with high-dose IL-2 alone in patients with metastatic melanoma.
        J Clin Oncol ASCO Annual Meeting Proceedings. 2009; 27: CRA9011
        • Kantoff P.W.
        • Higano C.S.
        • Shore N.D.
        • et al.
        Sipuleucel-T immunotherapy for castration-resistant prostate cancer.
        N Engl J Med. 2010; 363: 411-422
        • Longo D.L.
        New therapies for castration-resistant prostate cancer.
        N Engl J Med. 2010; 363: 479-481
        • Madan R.A.
        • Gulley J.L.
        • Fojo T.
        • et al.
        Therapeutic cancer vaccines in prostate cancer: the paradox of improved survival without changes in time to progression.
        Oncologist. 2010; 15: 969-975
        • Stein W.D.
        • Gulley J.
        • Schlom J.
        • et al.
        Tumor regression and growth rates determined in five intramural NCI prostate cancer trials. The growth rate as an indicator of therapeutic efficacy.
        Clin Cancer Res. 2011; 17: 907-917
        • Gulley J.L.
        • Arlen P.M.
        • Tsang K.Y.
        • et al.
        Pilot study of vaccination with recombinant CEA-MUC-1-TRICOM poxviral-based vaccines in patients with metastatic carcinoma.
        Clin Cancer Res. 2008; 14: 3060-3069
        • Rosenberg S.A.
        • Spiess P.
        • Lafreniere R.A.
        New approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes.
        Science. 1986; 233: 1318-1321
        • Rosenberg S.A.
        • Packard B.S.
        • Aebersold P.M.
        • et al.
        Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report.
        N Engl J Med. 1988; 319: 1676-1680
        • Dudley M.E.
        • Wunderlich J.R.
        • Yang J.C.
        • et al.
        Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma.
        J Clin Oncol. 2005; 23: 2346-2357
        • Rosenberg S.A.
        • Restifo N.P.
        • Yang J.C.
        • et al.
        Adoptive cell transfer: a clinical path to effective cancer immunotherapy.
        Nat Rev Cancer. 2008; 8: 299-308
        • Morgan R.A.
        • Dudley M.E.
        • Wunderlich J.R.
        • et al.
        Cancer regression in patients after transfer of genetically engineered lymphocytes.
        Science. 2006; 314: 126-129
        • Hughes M.S.
        • Yu Y.Y.
        • Dudley M.E.
        • et al.
        Transfer of a TCR gene derived from a patient with a marked antitumor response conveys highly active T-cell effector functions.
        Hum Gene Ther. 2005; 16: 457-472
        • Johnson L.A.
        • Morgan R.A.
        • Dudley M.E.
        • et al.
        Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen.
        Blood. 2009; 114: 535-546
        • Parkhurst M.R.
        • Yang J.C.
        • Langan R.C.
        • et al.
        T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis.
        Mol Ther. 2011; 19: 620-626
        • Parkhurst M.R.
        • Joo J.
        • Riley J.P.
        • et al.
        Characterization of genetically modified T-cell receptors that recognize the CEA:691-699 peptide in the context of HLA-A2.1 on human colorectal cancer cells.
        Clin Cancer Res. 2009; 15: 169-180
        • Robbins P.F.
        • Li Y.F.
        • El-Gamil M.
        • et al.
        Single and dual amino acid substitutions in TCR CDRs can enhance antigen-specific T cell functions.
        J Immunol. 2008; 180: 6116-6131
        • Simpson A.J.
        • Caballero O.L.
        • Jungbluth A.
        • et al.
        Cancer/testis antigens, gametogenesis and cancer.
        Nat Rev Cancer. 2005; 5: 615-625
        • Chen Y.T.
        • Scanlan M.J.
        • Sahin U.
        • et al.
        A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening.
        Proc Natl Acad Sci U S A. 1997; 94: 1914-1918
        • Zhao Y.
        • Zheng Z.
        • Robbins P.F.
        • et al.
        Primary human lymphocytes transduced with NY-ESO-1 antigen-specific TCR genes recognize and kill diverse human tumor cell lines.
        J Immunol. 2005; 174: 4415-4423
        • Robbins P.F.
        • Morgan R.A.
        • Feldman S.A.
        • et al.
        Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1.
        J Clin Oncol. 2011; 29: 917-924
        • Chinnasamy N.
        • Wargo J.A.
        • Yu Z.
        • et al.
        A TCR targeting the HLA-A∗0201-restricted epitope of MAGE-A3 recognizes multiple epitopes of the MAGE-A antigen superfamily in several types of cancer.
        J Immunol. 2011; 186: 685-696
        • Lamers C.H.
        • Willemsen R.
        • van E.P.
        • et al.
        Immune responses to transgene and retroviral vector in patients treated with ex vivo-engineered T cells.
        Blood. 2011; 117: 72-82
        • Lamers C.H.
        • Sleijfer S.
        • Vulto A.G.
        • et al.
        Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience.
        J Clin Oncol. 2006; 24: e20-e22
        • Kershaw M.H.
        • Westwood J.A.
        • Parker L.L.
        • et al.
        A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer.
        Clin Cancer Res. 2006; 12: 6106-6115
        • Pule M.A.
        • Savoldo B.
        • Myers G.D.
        • et al.
        Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma.
        Nat Med. 2008; 14: 1264-1270
        • Kochenderfer J.N.
        • Yu Z.
        • Frasheri D.
        • et al.
        Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells.
        Blood. 2010; 116: 3875-3886
        • Morgan R.A.
        • Yang J.C.
        • Kitano M.
        • et al.
        Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2.
        Mol Ther. 2010; 18: 843-851
        • Brentjens R.
        • Yeh R.
        • Bernal Y.
        • et al.
        Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial.
        Mol Ther. 2010; 18: 666-668
        • Heslop H.E.
        Safer CARS.
        Mol Ther. 2010; 18: 661-662
        • Dudley M.E.
        • Gross C.A.
        • Langhan M.M.
        • et al.
        CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma.
        Clin Cancer Res. 2010; 16: 6122-6131
      3. Hwu P, Laszlo G. Adoptive T cell therapy for metastatic melanoma: the MD Anderson experience. International Society for Biological Therapy of Cancer 25th Annual Meeting. Washington, DC, October 2–4, 2010.

        • Besser M.J.
        • Shapira-Frommer R.
        • Treves A.J.
        • et al.
        Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients.
        Clin Cancer Res. 2010; 16: 2646-2655
        • Chinnasamy D.
        • Yu Z.
        • Theoret M.R.
        • et al.
        Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice.
        J Clin Invest. 2010; 120: 3953-3968